The Study of Unmanned Twin-body Asymmetric Flying-Wing Aircraft for Monitoring Air Quality

By: Guo Xinze

Instructor: Huang Jun, Fan Bozhao Beijing National Day school, Beijing, China

CONTENTS

01 Introduction

02 Aerodynamic Principle

03 Fabrication & Flight Test

04

Conclusion, Innovation, and Prospect

Acknowledgement

Introduction

- Traditional automatic air monitoring station
- Current Unmanned Aerial Vehicle (UAV)
- Twin-body Asymmetric Flying-Wing Aircraft (TAFA)

Traditional automatic air monitoring station

- Costly (labors, periodic maintenance...)
- Difficult to carry out large-scale measurement.
- Observation point is not representative.

Long endurance, high loading unmanned aerial vehicle(UAV)

Current Unmanned Aerial Vehicle (UAV)

(a) Monoplane

(b) Twin-body Aircraft

(c) Asymmetric Twin-body Aircraft

(d) Flying-Wing Aircraft

Problem: Low load Low voyage Low Endurance Low efficiency

Twin-body Asymmetric Flying-Wing Aircraft (TAFA)

Advantage: high lift, high voyage, and high endurance.

Twin-body —

TAFA

Disadvantage: high mid-wing strength requirement, no usable airport, loading interfere with each other.

Asymmetric Arrangement

Solve the interference problem and no usable airport problem.

Flying-Wing Layout

Increase lift, voyage, and endurance, reinforce the mid-wing strength.

Aerodynamic Principle

- Theory
- Design Process
- Simulation
- Results and Discussion

Theory

• Principle of Flight Lift Generation

- $\frac{1}{2}\rho u_1^2 + \rho g z_1 + p_1 = \frac{1}{2}\rho u_2^2 + \rho g z_2 + p_2$
- $\frac{1}{2}\rho u_1^2 + p_1 = \frac{1}{2}\rho u_2^2 + p_2$
- The lift is proportional to the wing area.
- Balance Control of Aircraft
 - $F_1 \times A = F_2 \times B$
 - Put the engine on the center mass

Design Process

Flight Requirements		
Payload weight	9.24kg	
Endurance	8h(battery)/24h(fuel)	
Loiter Speed	25m/s	

Payload Requirements		
Radar	203*165*76mm, 2.44kg	
Antenna	127*127*38mm, 0.29kg	
Imaging processor	152.5*152.5*76mm, 1.41kg	
Lidar	142*70*230mm, 2.2kg	
Data link	290*179*161mm, 1.5kg	
Multispectral camera	127*177.1mm, 1.4kg	
Engine	60*161*93mm, 0.62 kg	

9

Total loading weight: 9.24 kg

Estimate takeoff weight: 36kg

$$\mathbf{L} = \frac{1}{2} C_y \rho v^2 S$$

Wing area = $2.39m^2$

Design Process

Vortex lattice method

Simulation

$$\omega(x,y) = -\frac{1}{4\pi} \iint_{S} \frac{(x-\xi)\gamma(\xi,\eta) + (y-\eta)\delta(\xi,\eta)}{[(x-\xi)^{2} + (y-\eta)^{2}]^{3/2}} d\xi d\eta - \frac{1}{4\pi} \iint_{W} \frac{(y-\eta)\delta_{\omega}(\xi,\eta)}{[(x-\xi)^{2} + (y-\eta)^{2}]^{3/2}} d\xi d\eta$$

• Computational Fluid Dynamics (CFD) $\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_{x}$ $\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \rho f_{y}$ $\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + \rho f_{z}$

Results and Discussion

Vortex Lattice Method Data

×z

- No large scale flow separation
- No stalled problem
- No obvious design problems

Results and Discussion

CFD Simulation Data

	L (N)	D (N)	L/D
TAFA	329.2787	19.50406	16.88257
Flying-wing Aircraft	335.3814	24.20468	13.85709
Twin-body Aircraft	320.5712	24.93343	12.85709
Monoplane	321.6086	26.47643	12.14698

TAFA has the highest lift-drag ratio

TAFA has the best flight performance

19

Fabrication & Flight Test

- Fabrication
- Flight Test

Fabrication

Flight Test

- ✓ Beijing University of Aeronautics and Astronautics
- \checkmark Stable and controllable
- \checkmark Control is sensitive and efficient
- ✓ Successful and feasible

Conclusion, Innovation, and Prospect

- Conclusion
- Innovation
- Prospect

(1) The combination of the three features can improve the lift, endurance, and efficiency of the twin-body aircraft.

(2) TAFA and other three aircraft models are designed and simulated. TAFA model is manufactured, and experimented. The results show that TAFA is well designed.

Innovation

- (1) A new type of UAV
- (2) Increase lift, endurance, and efficiency.
- (3) Reinforce the structural strength of the mid-wing.
- (4) Solve the equipment interference problem.

Prospect

- Applied into other tasks.
- Environmental-friendly.

Acknowledgement

• Acknowledgement

Acknowledgement

Thank you to Professor Huang Jun and Dr. Xie Jingfeng from Beijing university of aeronautics and astronautics. In addition, Thank you to Instructor Fan Bozhao and Dr. Dou Xiangmei from Beijing National Day's School.

THANK YOU

